Patents
μ μ μ©; μ΄λν
@patent{nokey,
title = {κ·Έλν μ΄ν μ μ μ΄μ©νμ¬ μ½λ¬Όμ μ¬μ₯λ μ±μ μμΈ‘νλ λ°©λ², μ₯μΉ λ° μ»΄ν¨ν°νλ‘κ·Έλ¨ (METHOD, DEVICE, AND COMPOUTER PROGRAM FOR PREDICTING DRUG-INDUCED CARDIOTOXICITY USING A GRAPH ATTENTION MECHANISM)},
author = {μ μ μ© and μ΄λν},
year = {2024},
date = {2024-10-11},
note = {μΆμλ²νΈ/μΌμ: 1020240138802 (2024.10.11)
μΆμμΈ: μ λ¨λνκ΅μ°ννλ ₯λ¨},
keywords = {},
pubstate = {published},
tppubtype = {patent}
}
μ μ μ©; μ΄μμ°
@patent{μ μ μ©2024,
title = {μ½λ¬Όμ μν κ° μμμ μμΈ‘νλ λ°©λ², μ₯μΉ, λ° μ»΄ν¨ν°νλ‘κ·Έλ¨ (METHOD, DEVICE, AND COMPUTER PROGRAM FOR PREDICTING DRUG-INDUCED LIVER INJURY)},
author = {μ μ μ© and μ΄μμ°},
doi = {https://doi.org/10.8080/1020230129732},
year = {2024},
date = {2024-03-12},
urldate = {2024-03-12},
abstract = {λ³Έ λ°λͺ μ, μ½λ¬Όμ μν κ° μμμ μμΈ‘νλ λ°©λ²μ μμ΄μ, νλ μ΄μμ μ½λ¬Ό μ 보λ₯Ό μμ νλ λ¨κ³; μκΈ° μ½λ¬Ό μ 보μμ μ½λ¬Όμ λΆμꡬ쑰μ 물리ννμ νΉμ§μ μΆμΆνλ μ μ²λ¦¬λ¨κ³; λ° μκΈ° μ½λ¬Όμ λΆμꡬ쑰μ 물리ννμ νΉμ§μ μ λ ₯μΌλ‘ νκ³ μκΈ° μ½λ¬Όκ³Ό κ° μμκ³Όμ μ°κ΄ μ¬λΆλ₯Ό μΆλ ₯μΌλ‘ νμ¬ μμΈ‘ λͺ¨λΈμ νμ΅μν€λ λ¨κ³;λ₯Ό ν¬ν¨νλ κ²μ μΌ νΉμ§μΌλ‘ νλ€.},
note = {λ±λ‘λ²νΈ/μΌμ: 1026483130000 (2024.03.12)
μΆμλ²νΈ/μΌμ: 1020230129732 (2023.09.26)
μΆμμΈ: μ λ¨λνκ΅μ°ννλ ₯λ¨},
keywords = {},
pubstate = {published},
tppubtype = {patent}
}
Sunyong Yoo; Jinmyung Jung
@patent{Yoo2022b,
title = {METHOD FOR ANALYZING GENETIC INTERACTION OF CANCER VIA MOLECULAR NETWORK REFINING PROCESS, AND SYSTEM USING SAME},
author = {Sunyong Yoo and Jinmyung Jung},
url = {https://patents.google.com/patent/US20230215514A1/en?oq=17%2f968%2c902},
year = {2022},
date = {2022-10-19},
urldate = {2022-10-19},
abstract = {Disclosed herein are a method for analyzing a genetic interaction to reduce a false positive in gene screening for at least one gene cluster associated with at least one type of cells by deriving the genetic interaction and a synthetic partner with at least one profile selected from the group consisting of a mutation profile, a loss-of-function profile, and an expression profile; and a system using same.},
note = {μΆμκ΅: US
μΆμλ²νΈ/μΌμ: 17/968,902 (2022.10.19)
μΆμμΈ: μ λ¨λνκ΅ μ°ννλ ₯λ¨},
keywords = {},
pubstate = {published},
tppubtype = {patent}
}
μ μ μ©; μ΄λν
@patent{nokey,
title = {λ₯λ¬λ κΈ°λ° νν©λ¬Ό μμ½ ν¨κ³Ό μμΈ‘ λ°©λ² (A METHOD FOR PREDICTING THE MEDICINAL EFFECT OF COMPOUNDS USING DEEP LEARNING)},
author = {μ μ μ© and μ΄λν},
doi = {https://doi.org/10.8080/1020210012339},
year = {2022},
date = {2022-10-17},
urldate = {2022-10-17},
abstract = {λ³Έ λ°λͺ μ νλν μμ½ λ¬Όμ§ λ°μ΄ν°λ‘λΆν° 3μ’ μ νΌμ³ λ°μ΄ν°λ₯Ό μμ±νκ³ , νΌμ³ λ°μ΄ν°λ‘ μ κ²½λ§ λͺ¨λΈμ νμ΅μν¨ ν, νλν μ κ· νν©λ¬Ό λ°μ΄ν°λ₯Ό μ κ²½λ§ λͺ¨λΈμ μ μ©νμ¬ μ κ· νν©λ¬Όμ μμ½ ν¨κ³Όλ₯Ό μμΈ‘νλ μμ½ ν¨κ³Ό μμΈ‘ λ°©λ²μ κ΄ν κ²μΌλ‘, λ³Έ λ°λͺ μ μ΄μ©νλ©΄ λ₯λ¬λ λͺ¨λΈμ λ³λͺ© νμ (bottleneck effect)μ μννλ―λ‘, λκ·λͺ¨ νν©λ¬Ό μ°κ΅¬λ₯Ό μννλ λ°μ μ¬μ©λ μ μκ³ , λλμ ν보 μμ½ λ¬Όμ§μ λν νν©λ¬Όμ μλΉμ μ€ν¬λ¦¬λ (preliminary screening)μ μμ½ ν¨κ³Ό μμΈ‘ μ νλλ‘ μνν μ μλ€.},
note = {λ±λ‘λ²νΈ/μΌμ: 1024571590000 (2022.10.17)
μΆμλ²νΈ/μΌμ: 1020210012339 (2021.01.28)
μΆμμΈ: μ λ¨λνκ΅μ°ννλ ₯λ¨, μ¬λ¨λ²μΈ μ ν΅μ²μ°λ¬ΌκΈ°λ° μ μ μλμλ³΄κ° μ¬μ λ¨, νκ΅κ³ΌνκΈ°μ μ},
keywords = {},
pubstate = {published},
tppubtype = {patent}
}
μ μ μ©; μ΄λν; μ μ μ°
@patent{μ μ μ©2022c,
title = {λ₯λ¬λ κΈ°μ μ μ΄μ©ν μ¬λ°©μΈλ νμμ ννμ± λμ‘Έμ€ λ°λ³ κ°λ₯μ± μμΈ‘ λ°©λ² λ° μ₯μΉ (METHODS AND APPARATUS FOR PREDICTING THE OCCURRENCE OF ISCHEMIC STROKE IN PATIENTS WITH ATRIAL FIBRILLATION BASED ON DEEP LEAARNING TECHNOLOGY)},
author = {μ μ μ© and μ΄λν and μ μ μ°},
doi = {https://doi.org/10.8080/1020220077733},
year = {2022},
date = {2022-06-24},
urldate = {2022-06-24},
abstract = {λ³Έ λ°λͺ μ λ₯λ¬λ κΈ°μ μ κΈ°λ°μΌλ‘ μ¬λ°©μΈλ (atrial fibrillation; AF) νμλ₯Ό λΉλ‘―ν λ€μν λμμ λν΄ ννμ± λμ‘Έμ€ λ°λ³ κ°λ₯μ±μ μμΈ‘νκΈ° μν λ°©λ² λ° μ₯μΉμ κ΄ν κ²μΌλ‘, λ³Έ λ°λͺ μ λ°λ₯Έ λ°©λ²μ λμμ λν μΈκ΅¬ν΅κ³ μ 보 (demographic information), λ³λ ₯ μ 보 (medical history information) λ° κ±΄κ°μ€λ¬Έμ‘°μ¬ μ 보 (health examination information)λ₯Ό ν¬ν¨νλ νΉμ±κ°μ κΈ°λ°μΌλ‘, λμμ ννμ± λμ‘Έμ€ λ°λ³ κ°λ₯μ±μ λμ μμ€μΌλ‘ μμΈ‘ν μ μλ€.},
note = {μΆμλ²νΈ/μΌμ: 1020220077733 (2022.6.24)
μΆμμΈ: μ λ¨λνκ΅μ°ννλ ₯λ¨, μ¬λ¨λ²μΈ μ ν΅μ²μ°λ¬ΌκΈ°λ° μ μ μλμλ³΄κ° μ¬μ λ¨, νκ΅κ³ΌνκΈ°μ μ},
keywords = {},
pubstate = {published},
tppubtype = {patent}
}
μ μ μ©; μ μ§λͺ
@patent{μ μ μ©2022,
title = {λΆμ λ€νΈμν¬μ μ μ νλ‘μΈμ€λ₯Ό ν΅ν μμ μ μ μ μνΈμμ© λΆμ λ°©λ² λ° μ΄λ₯Ό μ΄μ©ν μμ€ν (METHOD FOR ANALYZING OF GENETIC INTERACTIONS FOR CANCER VIA MOLECULAR NETWORK REFINING PROCESSES AND SYSTEM FOR USING THEREOF)},
author = {μ μ μ© and μ μ§λͺ },
doi = {https://doi.org/10.8080/1020220001820},
year = {2022},
date = {2022-01-05},
abstract = {λ³Έ λ°λͺ μ λμ°λ³μ΄ νλ‘νμΌ(mutation profile), κΈ°λ₯ μμ€ νλ‘νμΌ(loss-of function profile) λ° λ°ν νλ‘νμΌ(expression profile)λ‘ μ΄λ£¨μ΄μ§ κ΅°μΌλ‘λΆν° μ νλλ 1μ’ μ΄μμ νλ‘νμΌμ μ΄μ©νμ¬ μ μ μ μνΈμμ©(genetic interaction) λ° ν©μ± ννΈλ(synthetic partner)λ₯Ό λμΆν¨μΌλ‘μ¨, μ μ΄λ νλ μ΄μμ μΈν¬ κ°κ°μ κ΄λ ¨λ μ μ΄λ νλ μ΄μμ μ μ μκ΅°μ λν μ μ μ μ€ν¬λ¦¬λμ μμμ±μ κ°μμν€κΈ° μν μ μ μ μνΈμμ© λΆμ λ°©λ² λ° μ΄λ₯Ό μ΄μ©νλ μμ€ν μ κ΄ν κ²μ΄λ€.},
note = {μΆμλ²νΈ/μΌμ: 1020220001820 (2022.01.05)
μΆμμΈ: μμλνκ΅μ°ννλ ₯λ¨, μ λ¨λνκ΅μ°ννλ ₯λ¨},
keywords = {},
pubstate = {published},
tppubtype = {patent}
}
Sunyong Yoo
@patent{Yoo2021,
title = {Method for predicting medicinal effects of compounds using deep learning},
author = {Sunyong Yoo},
url = {https://patents.google.com/patent/US20220238226A1/en?oq=17%2f564%2c874},
year = {2021},
date = {2021-12-29},
urldate = {2021-12-29},
abstract = {Disclosed is a method for predicting medicinal effects wherein medicinal effects of novel compounds are predicted by generating three types of feature data from acquired medicinal substance data, training a neural network model, and then applying acquired new compound data to the neural network model, and the use of the present disclosure mitigates the bottleneck effect of deep learning models and thus the present disclosure can be used to perform a large-scale natural compound study and can perform a preliminary screening of compounds for a large number of candidate medicinal substances, with a high accuracy of medicinal effect prediction.},
note = {μΆμκ΅: US
μΆμλ²νΈ/μΌμ: 17/564,874 (2021.12.29)
μΆμμΈ: μ λ¨λνκ΅ μ°ννλ ₯λ¨},
keywords = {},
pubstate = {published},
tppubtype = {patent}
}
μ μ μ©; μ΄λν
@patent{μ μ μ©2018λΆμ,
title = {λΆμ λ€νΈμν¬, ννμ νΉμ± λ° λ―Όμ‘±μ½νμ μ¦κ±°μ κΈ°λ°ν ν΅ν© λΆμμ μ΄μ©ν νμ΄ν μΌλ―Έμ»¬μ 건κ°ν¨κ³Ό μμΈ‘ λ°©λ² λ° μ΄λ₯Ό μν μμ€ν (Method and system for predicting health effects of phytochemicals using integrated analysis of the molecular network, chemical properties and ethnopharmacological evidence)},
author = {μ μ μ© and μ΄λν},
doi = {https://doi.org/10.8080/1020180130202},
year = {2021},
date = {2021-02-19},
urldate = {2018-10-29},
publisher = {KO},
abstract = {λ³Έ λ°λͺ μ λΆμ λ€νΈμν¬, ννμ νΉμ± λ° λ―Όμ‘±μ½νμ μ¦κ±°μ κΈ°λ°ν ν΅ν© λΆμμ μ΄μ©ν νμ΄ν μΌλ―Έμ»¬μ 건κ°ν¨κ³Ό μμΈ‘ λ°©λ² λ° μ΄λ₯Ό μν μμ€ν μ κ΄ν κ²μ΄λ€. ꡬ체μ μΌλ‘, λ³Έ λ°λͺ μ λ°λ₯Έ λΆμ λ€νΈμν¬, ννμ νΉμ± λ° λ―Όμ‘±μ½νμ μ¦κ±°μ κΈ°λ°ν ν΅ν© λΆμμ μ΄μ©ν νμ΄ν μΌλ―Έμ»¬μ 건κ°ν¨κ³Ό μμΈ‘ λ°©λ²μ κ°κ°μ μ 보λ₯Ό κ°λ³μ μΌλ‘ μ΄μ©νμ§ μκ³ ν΅ν©μ μΌλ‘ λΆμν¨μΌλ‘μ¨, μ λ’°λ λκ² νμ΄ν μΌλ―Έμ»¬μ 건κ°ν¨κ³Όλ₯Ό λκ·λͺ¨λ‘ λΆμνμ¬ μμΈ‘ν μ μμΌλ―λ‘, μκΈ° λ°©λ² λ° μ΄λ₯Ό μν μμ€ν μ μ μ©ν κΈ°λ₯μ κ°λ νμ΄ν μΌλ―Έμ»¬μ μ΄μ©ν μ½λ¬Ό κ°λ°μ μ μ©νκ² μ¬μ©λ μ μλ€.},
note = {λ±λ‘λ²νΈ/μΌμ: 1022200040000 (2021.02.19)
μΆμλ²νΈ/μΌμ: 1020180130202 (2018.10.29)
μΆμμΈ: μ¬λ¨λ²μΈ μ ν΅μ²μ°λ¬ΌκΈ°λ° μ μ μλμλ³΄κ° μ¬μ λ¨, νκ΅κ³ΌνκΈ°μ μ},
keywords = {},
pubstate = {published},
tppubtype = {patent}
}
μ μ μ©; μ΄λν
@patent{μ μ μ©2020,
title = {ννν μ€μ¬μ λ€νΈμν¬ λΆμμ μ΄μ©ν μ²μ° νν©λ¬Όμ μ½λ¦¬ ν¨κ³Ό μμΈ‘ λ°©λ² λ° μ΄λ₯Ό μν μμ€ν (Method and system for predicting pharmacological effects of natural compounds using phenotype-oriented network analysis)},
author = {μ μ μ© and μ΄λν},
doi = {https://doi.org/10.8080/1020180118437},
year = {2020},
date = {2020-09-14},
urldate = {2020-09-14},
abstract = {λ³Έ λ°λͺ μ ννν μ€μ¬μ λ€νΈμν¬ λΆμμ μ΄μ©ν μ²μ° νν©λ¬Όμ μ½λ¦¬ ν¨κ³Ό μμΈ‘ λ°©λ² λ° μ΄λ₯Ό μν μμ€ν μ κ΄ν κ²μ΄λ€. ꡬ체μ μΌλ‘, λ³Έ λ°λͺ μ λ°λ₯Έ μλ¬Όμ ννν 벑ν°λ₯Ό μ΄μ©ν μ²μ° νν©λ¬Όμ μ½λ¦¬ ν¨κ³Ό μμΈ‘ λ°©λ²μ μ²μ° νν©λ¬Όμ λν λΆμ‘±ν λΆμμ μ 보μ κΈ°λ°νμ§ μκ³ , μλ¬Όμ νννμ λν νλΆν μ 보μ κΈ°λ°νμ¬ μ²μ° νν©λ¬Όμ μ μ¬μ μ½λ¦¬ ν¨κ³Όλ₯Ό λκ·λͺ¨λ‘ λΆμν μ μμΌλ―λ‘, μκΈ° λ°©λ² λ° μ΄λ₯Ό μν μμ€ν μ μ€λ μ¬μ©μΌλ‘ μμ μ±μ΄ λμ μ²μ° νν©λ¬Όμ μ΄μ©ν μ½λ¬Ό κ°λ°μ μ μ©νκ² μ¬μ©λ μ μλ€.},
note = {λ±λ‘λ²νΈ/μΌμ: 1021575790000 (2020.09.14)
μΆμλ²νΈ/μΌμ: 1020180118437 (2018.10.04)
μΆμμΈ: μ¬λ¨λ²μΈ μ ν΅μ²μ°λ¬ΌκΈ°λ° μ μ μλμλ³΄κ° μ¬μ λ¨, νκ΅κ³ΌνκΈ°μ μ},
keywords = {},
pubstate = {published},
tppubtype = {patent}
}
Sunyong Yoo; Doheon Lee
@patent{Yoo2019,
title = {Method for predicting heath effect of phytochemical, using integrated analysis based on molecular network, chemical property, and ethnopharmacological evidence, and system therefor},
author = {Sunyong Yoo and Doheon Lee},
url = {https://patents.google.com/patent/WO2020091185A1/en?oq=PCT%2fKR2019%2f008244},
year = {2019},
date = {2019-07-04},
urldate = {2019-07-04},
abstract = {The present invention relates to a method for predicting health effects of phytochemicals by using integrated analysis based on molecular networks, chemical properties, and ethnopharmacological evidences, and a system therefor. Specifically, a method for predicting health effects of phytochemicals, using integrated analysis based on molecular networks, chemical properties, and ethnopharmacological evidences according to the present invention does not utilizes individual information separately, but analyzes the information in an integrated manner and as such, can analyze and predict health effects of phytochemicals on a mass scale with high reliability. Therefore, the method and a system therefor can be advantageously used to develop drugs that utilize phytochemicals having useful functions.},
note = {μΆμλ²νΈ/μΌμ: PCT/KR2019/008244 (2019.07.04)
μΆμμΈ: μ¬λ¨λ²μΈ μ ν΅μ²μ°λ¬ΌκΈ°λ° μ μ μλμλ³΄κ° μ¬μ λ¨, νκ΅κ³ΌνκΈ°μ μ},
keywords = {},
pubstate = {published},
tppubtype = {patent}
}
Sunyong Yoo; Doehon Lee
@patent{Yoo2019b,
title = {Method for predicting pharmacological effect of natural compound using phenotype-centered network analysis, and system therefor},
author = {Sunyong Yoo and Doehon Lee},
url = {https://patents.google.com/patent/WO2020071621A1/en?oq=PCT%2fKR2019%2f008242},
year = {2019},
date = {2019-07-04},
urldate = {2019-07-04},
abstract = {The present invention relates to a method for predicting a pharmacological effect of a natural compound using a phenotype-centered network analysis, and a system therefor. Specifically, the method for predicting a pharmacological effect of a natural compound using a phenotype vector of a plant, according to the present invention, enables a large-scale analysis of a potential pharmacological effect of a natural compound to be conducted, not on the basis of insufficient molecular information of the natural compound, but on the basis of abundant information associated with a phenotype of a plant, and thus the method and the system therefor may be usefully employed in the development of a drug using a natural compound having a high level of safety as a result of the long-term use thereof.},
note = {μΆμλ²νΈ/μΌμ: PCT/KR2019/008242 (2019.07.04)
μΆμμΈ: μ¬λ¨λ²μΈ μ ν΅μ²μ°λ¬ΌκΈ°λ° μ μ μλμλ³΄κ° μ¬μ λ¨, νκ΅κ³ΌνκΈ°μ μ},
keywords = {},
pubstate = {published},
tppubtype = {patent}
}
μ μ μ©; μ΄λν
@patent{nokey,
title = {μ½λ¬Ό κ°μ μνΈ μμ© μμΈ‘ λ°©λ² (Method of Predicting Interaction Between Drugs)},
author = {μ μ μ© and μ΄λν},
doi = {https://doi.org/10.8080/1020170091627},
year = {2018},
date = {2018-03-06},
abstract = {λ³Έ λ°λͺ μ μ»΄ν¨ν°λ₯Ό μ΄μ©ν μμ€ν μ ꡬλΉλ 볡μμ μλ¨μ μ΄μ©ν΄ μμ€ν μμμ μ½λ¬Ό κ°μ μνΈ μμ©μ μμΈ‘νλ λ°©λ²μΌλ‘μ, μ 1 μλ¨μ΄, 볡μμ νμ κ°μ μ°κ²° κ΄κ³λ₯Ό μ μν λΆμ λ€νΈμν¬ μμ μ½λ¬Όμ μμ©μν€λ©΄, λ€νΈμν¬ μ νΈ μ ν μκ³ λ¦¬μ¦μ μν΄ μ½λ¬Όμ ν¨κ³Όκ° 볡μμ νμ κ°μ μ νλμ΄ κ° νμ μ λν μ½λ¬Όμ ν¨κ³Ό κ°μ΄ μ°μΆλλ μ 1 λ¨κ³μ, μ 2 μλ¨μ΄, 볡μμ νννμ κ°κ° μ λ°νλ 볡μμ νμ μ λν μ½λ¬Όμ ν¨κ³Ό κ°μ ν©νμ¬, 볡μμ νννμ λν μ 1 μ½λ¬Ό ν¨λ₯ μ ν κ°μ μ°μΆνλ μ 2 λ¨κ³μ, μ 3 μλ¨μ΄, μ 1 μ½λ¬Ό ν¨λ₯ μ ν κ°μ λΆμ λ€νΈμν¬μ νΉμ±μ κΈ°μ΄λ‘ μ κ·ννμ¬, 볡μμ ννν μ€ μ½λ¬Όμ΄ λ°νλλ νννμ νμΈν μ μλ μ§νμΈ μ 1 μ½λ¬Ό ννν 벑ν°λ₯Ό μΆλ‘ νλ μ 3 λ¨κ³λ₯Ό ν¬ν¨νλ μ½λ¬Ό κ°μ μνΈ μμ© μμΈ‘ λ°©λ²μ μ 곡νλ€.},
note = {λ±λ‘λ²νΈ/μΌμ: 1018377120000 (2018.03.06)
μΆμλ²νΈ/μΌμ: 1020170091627 (2017.07.19)
μΆμμΈ: μ¬λ¨λ²μΈ μ ν΅μ²μ°λ¬ΌκΈ°λ° μ μ μλμλ³΄κ° μ¬μ λ¨, νκ΅κ³ΌνκΈ°μ μ},
keywords = {},
pubstate = {published},
tppubtype = {patent}
}
μ μ μ©; μ΄λν
@patent{μ μ μ©2015μ²μ°λ¬Ό,
title = {μ²μ°λ¬Ό ν¨λ₯ λΆμμ μν λ€νΈμν¬ λΆμλ°©λ² (A Method for Predicting Natural Product Drugs Based On Network Analysis)},
author = {μ μ μ© and μ΄λν},
doi = {https://doi.org/10.8080/1020150094351},
year = {2017},
date = {2017-05-24},
urldate = {2017-05-24},
publisher = {KO},
abstract = {λ³Έ λ°λͺ μ λ°λ₯Έ μ²μ°λ¬Ό ν¨λ₯ λΆμμ μν λ€νΈμν¬ λΆμλ°©λ²μ, μ½μ¬ μ 보λ₯Ό μμ§νμ¬ λ°μ΄ν°νμ ꡬμΆνλ (a)λ¨κ³, μκΈ° λ°μ΄ν°νμ ꡬμ±νλ μ½μ¬ μ 보λ₯Ό κΈ°λ°μΌλ‘ 볡μμ λ μ΄μ΄λ₯Ό νμ±νμ¬ λ€μ€ λ€νΈμν¬λ₯Ό ꡬμ±νλ (b)λ¨κ³, μκΈ° λ€μ€ λ€νΈμν¬ μ€ ν¬ν¨ κ΄κ³λ₯Ό κ°μ§λ μ΄λΆ λ€νΈμν¬λ₯Ό μ ννλ (c)λ¨κ³, μκΈ° μ΄λΆ λ€νΈμν¬ μ€ νμλ μ΄μ΄λ₯Ό ꡬμ±νλ νμλ Έλμ κ°μ€μΉλ₯Ό λΆμ¬νλ (d)λ¨κ³, μλ‘ κ΄λ ¨λ 볡μμ νμλ Έλλ‘ κ΅¬μ±λ 볡μμ νμλ Έλκ΅°μ λν΄, κ°λ³ νμλ Έλμ κ°μ€μΉλ₯Ό μ΄μ©νμ¬ νμλ Έλ μμ κ°μ€μΉλ₯Ό λΆμ¬νλ (e)λ¨κ³ λ° νμλ Έλ μμ κ°μ€μΉ ν©μ΄ μ€μ κΈ°μ€ μ΄μμΈ νμλ Έλκ΅°μ μΆμΆνλ (f)λ¨κ³λ₯Ό ν¬ν¨νλ€.},
note = {λ±λ‘λ²νΈ/μΌμ: 1017418000000 (2017.05.24)
μΆμλ²νΈ/μΌμ: 1020150094351 (2015.07.01)
μΆμμΈ: μ¬λ¨λ²μΈ μ ν΅μ²μ°λ¬ΌκΈ°λ° μ μ μλμλ³΄κ° μ¬μ λ¨, νκ΅κ³ΌνκΈ°μ μ},
keywords = {},
pubstate = {published},
tppubtype = {patent}
}
μ μ μ©; μ΄λν
@patent{μ μ μ©2015μ μμ무기λ‘μ,
title = {μ μμ무기λ‘μ μ 보 μ΄λ‘ μ μ΄μ©ν μ΅λͺ ν μ₯μΉ λ° λ°©λ² (Anonymizing Device and Method using Information theory approach of Electronic Medical Records)},
author = {μ μ μ© and μ΄λν},
doi = {https://doi.org/10.8080/1020130131737},
year = {2015},
date = {2015-05-06},
urldate = {2015-01-01},
publisher = {KO},
abstract = {μ μμ무기λ‘μ μ 보 μ΄λ‘ μ μ΄μ©ν μ΅λͺ ν μ₯μΉ, λ°©λ² λ° κΈ°λ‘맀체λ₯Ό κ°μλλ€. μ μμ무기λ‘(Electronic Medical Record, EMR)μ λ°μ΄ν°κ° μ μ₯λ μ μ₯λΆ, μ μ₯λ λ°μ΄ν°μ κ°λ³ μμ±λ€μ λν μνΈλ‘νΌ(entropy)λ₯Ό μ°μΆνλ μνΈλ‘νΌ μ°μΆλΆ, κ°λ³ μμ±λ€μ μ‘°ν©νμ¬ μμ± μ‘°ν©λ€μ μμ±νλ μμ± μ‘°ν©λΆ, μμ±λ μμ± μ‘°ν©λ€μ λν κ²°ν© μνΈλ‘νΌ(joint entropy)λ₯Ό μ°μΆνλ κ²°ν© μνΈλ‘νΌ μ°μΆλΆ, μ°μΆλ κ²°ν© μνΈλ‘νΌμ μμ‘΄λλ₯Ό μ°μΆνλ μμ‘΄λ μ°μΆλΆ, κ²°ν© μνΈλ‘νΌ λ° μμ‘΄λμ μμ± μ‘°ν©λ€ μ€ κΈ°μ€μ λ μ 보 μμ€λλ³΄λ€ μ μ μμ± μ‘°ν©μ μ ννλ μμ± μ‘°ν© μ νλΆ λ° μ νλ μμ± μ‘°ν©μ κΈ°μ΄λ‘ k-μ¬μλ³ λ°©μ§ κΈ°λ²(k-anonymity)μ μ΄μ©νμ¬ λ°μ΄ν°λ₯Ό μ΅λͺ ννλ k-μ¬μλ³ λ°©μ§λΆλ₯Ό ν¬ν¨νλ€.},
note = {λ±λ‘λ²νΈ/μΌμ: 1015194490000 (2015.05.06)
μΆμλ²νΈ/μΌμ: 1020130131737 (2013.10.31)
μΆμμΈ: νκ΅κ³ΌνκΈ°μ μ},
keywords = {},
pubstate = {published},
tppubtype = {patent}
}
Technology Transfer
- μ°ν©νμ΅ κΈ°λ° λ©νλ²μ€ νλ«νΌμ ν΅ν κ±΄κ° κ΄λ¦¬ κΈ°μ κ³ λν λ Ένμ° (Know-how for advancing health management technology through a federated learning-based metaverse platform), to BIOBRAINΒ company, 2024.11.18
- λ©νλͺ¨λΉλ¦¬ν° νκ²½μμμ μ€κ°ν ν¬μ€μΌμ΄ 컨ν μΈ κ΅¬μΆ λ Ένμ° (Know-how in constructing realistic healthcare contents in a meta-mobility environment), to BIOBRAINΒ company, 2023.11.28
- μ΄μ§ μ 보μ λ©ν°λͺ¨λ¬ νμ΅ κΈ°μ λ Ένμ° (Know-how in multi-modal learning of heterogeneous information), to BIOBRAINΒ company, 2023.9.15
- μ°ν©νμ΅ κΈ°λ° λ©νλ²μ€ νλ«νΌμ ν΅ν μ μ κ±΄κ° κ΄λ¦¬ κΈ°μ λ Ένμ° (Know-how in mental health management technology through a federated learning-based metaverse platform), to BIOBRAINΒ company, 2022.12.1
- λ₯λ¬λ κΈ°λ° νν©λ¬Ό μμ½ ν¨κ³Ό μμΈ‘λ°©λ² (A method for predicting the medicinal effect of compounds using deep learning), to BIOBRAINΒ company, 2022.6.22
- ICT μΌμ λ°μ΄ν° λκΈ°ν μμ§ λ° μ λ’°μ± νκ° λ Ένμ° (Know-how in synchronized collection and reliability evaluation of ICT sensor data), to FunThing, 2022.4.11
Software CopyrightΒ
- κ·Έλν μ΄ν μ μ νμ©ν νν©λ¬Όμ μ¬μ₯λ μ± μμ μ± νκ° λ° μμΈ‘ μκ³ λ¦¬μ¦Β , μ΄λν, μ μ μ©, C-2024-043127 (μ μκΆ λ±λ‘), μ λ¨λνκ΅μ°ννλ ₯λ¨
- μμλͺ λ¬Έν μ 보 κΈ°λ° λ¬Έμ μλ² λ©μ ν΅ν μ½λ¬Ό κ° μνΈμμ© μμΈ‘ λͺ¨λΈ, μ μ μ°, μ μ μ©, C-2024-037513 (μ μκΆ λ±λ‘), μ λ¨λνκ΅μ°ννλ ₯λ¨
- νν©λ¬Όμ κ΅μ νμ€μλ³μ λ§€ν μλν μκ³ λ¦¬μ¦, μ λͺ ν, μ μ μ©, C-2024-003314 (μ μκΆ λ±λ‘), μ λ¨λνκ΅μ°ννλ ₯λ¨
- λλ€ μν¬λ₯Ό νμ©ν λ€νΈμν¬ μ½λ¦¬ν κΈ°λ° μν λ° μ²μ°λ¬Ό μμ μ± λ° κΈ°λ₯μ± νκ° μκ³ λ¦¬μ¦, λ°μ€μ, μ μ μ©, C-2024-003316 (μ μκΆ λ±λ‘), μ λ¨λνκ΅μ°ννλ ₯λ¨
- μν λ° μ²μ°λ¬Όμ μμ μ± λ° κΈ°λ₯μ± λΆμμ μν μ°κ΄ κ·μΉ νμ κΈ°λ° μκ³ λ¦¬μ¦, μ νμ§, μ μ μ©, C-2024-003315 (μ μκΆ λ±λ‘), μ λ¨λνκ΅μ°ννλ ₯λ¨
- μ£Όμ κ³μΈ΅ κΈ°λ° λ₯λ¬λ λͺ¨λΈμ νμ©ν μ½λ¬Όμ νμ λ μ± μμΈ‘ λ° λΆμ μκ³ λ¦¬μ¦, μ λͺ ν, μ μ μ©, C-2022-054108 (μ μκΆ λ±λ‘), μ λ¨λνκ΅μ°ννλ ₯λ¨
- λ¬Έμ μλ² λ© κΈ°λ° μ½λ¬Όμ μνΈμμ© μμΈ‘ μκ³ λ¦¬μ¦, μ μ μ°, μ μ μ©, C-2022-054107 (μ μκΆ λ±λ‘), μ λ¨λνκ΅μ°ν©νλ ₯λ¨
- λ¨Έμ λ¬λ λͺ¨λΈμ μ΄μ©ν μ½μΈμ± κ° μμ μμΈ‘μ ν΄μ μκ³ λ¦¬μ¦, μ΄μμ°, μ μ μ©, C-2022-054106 (μ μκΆ λ±λ‘), μ λ¨λνκ΅μ°ν©νλ ₯λ¨