2025
Dohyeon Lee; Sunyong Yoo
Abstract | Links | BibTeX | Dimensions | Tags: Artificial Intelligence, Attention mechanism, Bioinformatics, Cardiotoxicity, Deep learning, Graph attention network
@article{Lee2025,
title = {hERGAT: predicting hERG blockers using graph attention mechanism through atom- and molecule-level interaction analyses},
author = {Dohyeon Lee and Sunyong Yoo},
url = {https://link.springer.com/article/10.1186/s13321-025-00957-x?utm_source=rct_congratemailt&utm_medium=email&utm_campaign=oa_20250128&utm_content=10.1186/s13321-025-00957-x},
doi = {10.1186/s13321-025-00957-x},
issn = {1758-2946},
year = {2025},
date = {2025-01-28},
urldate = {2025-01-28},
journal = {Journal of Cheminformatics},
volume = {17},
number = {11},
abstract = {The human ether-a-go-go-related gene (hERG) channel plays a critical role in the electrical activity of the heart, and its blockers can cause serious cardiotoxic effects. Thus, screening for hERG channel blockers is a crucial step in the drug development process. Many in silico models have been developed to predict hERG blockers, which can efficiently save time and resources. However, previous methods have found it hard to achieve high performance and to interpret the predictive results. To overcome these challenges, we have proposed hERGAT, a graph neural network model with an attention mechanism, to consider compound interactions on atomic and molecular levels. In the atom-level interaction analysis, we applied a graph attention mechanism (GAT) that integrates information from neighboring nodes and their extended connections. The hERGAT employs a gated recurrent unit (GRU) with the GAT to learn information between more distant atoms. To confirm this, we performed clustering analysis and visualized a correlation heatmap, verifying the interactions between distant atoms were considered during the training process. In the molecule-level interaction analysis, the attention mechanism enables the target node to focus on the most relevant information, highlighting the molecular substructures that play crucial roles in predicting hERG blockers. Through a literature review, we confirmed that highlighted substructures have a significant role in determining the chemical and biological characteristics related to hERG activity. Furthermore, we integrated physicochemical properties into our hERGAT model to improve the performance. Our model achieved an area under the receiver operating characteristic of 0.907 and an area under the precision-recall of 0.904, demonstrating its effectiveness in modeling hERG activity and offering a reliable framework for optimizing drug safety in early development stages.},
note = {Correspondence to Sunyong Yoo},
keywords = {Artificial Intelligence, Attention mechanism, Bioinformatics, Cardiotoxicity, Deep learning, Graph attention network},
pubstate = {published},
tppubtype = {article}
}
2024
서문수빈; 유선용
Abstract | Links | BibTeX | Tags: CYP450, Deep learning, Graph attention network
@conference{서문수빈2024cytochrome,
title = {Cytochrome P450 동위체 억제제 예측을 위한 그래프 어텐션 네트워크 모델 개발},
author = {서문수빈 and 유선용},
url = {https://www.dbpia.co.kr/pdf/pdfView.do?nodeId=NODE11861993&googleIPSandBox=false&mark=0&minRead=5&ipRange=false&b2cLoginYN=false&icstClss=010000&isPDFSizeAllowed=true&accessgl=Y&language=ko_KR&hasTopBanner=true},
year = {2024},
date = {2024-01-01},
urldate = {2024-01-01},
booktitle = {한국정보과학회 학술발표논문집},
journal = {한국정보과학회 학술발표논문집},
pages = {804–806},
publisher = {한국정보과학회},
abstract = {Cytochrome P450 효소는 모든 대사 반응 중 약 75%를 책임지며, 특히 1A2, 2C9, 2C19, 2D6, 3A4 등은 대다수 약물의 대사에 관여하고, 다수의 부작용을 유발하는 것으로 알려져 있다. 이에 따라, 신약 개발 과정에서 이들 cytochrome P450을 억제하는 화합물을 식별하는 것은 매우 중요하다. 본 논문은 약물 분자의 그래프 구조를 이용하고 self-attention 메커니즘을 적용하여 P450 동위체를 억제하는 화합물을 예측하는 새로운 모델을 제안한다. 이 모델은 Graph Attention Network (GAT)를 활용하여 분자의 그래프 표현을 학습하고, Fully-connected layer을 통해 예측을 수행한다. 또한, 데이터의 불균형 문제를 해결하기 위해 Focal loss 함수를 적용하였다. 이 연구는 in vivo에 드는 비용과 시간을 절감하고, 신약 개발의 기간과 비용을 줄이는데 기여할 것으로 기대된다},
keywords = {CYP450, Deep learning, Graph attention network},
pubstate = {published},
tppubtype = {conference}
}
송윤주; 유선용
Abstract | Links | BibTeX | Tags: Deep learning, Graph attention network
@conference{송윤주2024화합물의,
title = {화합물의 폐 발암성 예측을 위한 그래프 신경망 접근법},
author = {송윤주 and 유선용},
url = {https://www.dbpia.co.kr/pdf/pdfView.do?nodeId=NODE11861976&googleIPSandBox=false&mark=0&minRead=5&ipRange=false&b2cLoginYN=false&icstClss=010000&isPDFSizeAllowed=true&accessgl=Y&language=ko_KR&hasTopBanner=true},
year = {2024},
date = {2024-01-01},
urldate = {2024-01-01},
booktitle = {한국정보과학회 학술발표논문집},
journal = {한국정보과학회 학술발표논문집},
pages = {753–755},
publisher = {한국정보과학회},
abstract = {폐암은 매년 수백만 명의 사망자를 초래하는 주요 질환 중 하나이며, 특히 2022년 한국에서는 암 중 사망률이 가장 높은 질환으로 기록되었다. 이에 따라, 폐암을 유발하는 화합물에 대한 이해와 연구가 필수적이며, 본 연구는 기존의 기계학습 및 딥러닝 방법의 한계를 극복하고, 화합물의 폐암 유발 가능성을 예측하기 위해 Graph Attention Network (GAT)를 활용한 새로운 접근방식을 제안하고 평가하였다. 본 연구에서는 화합물 발암성 데이터인 CPDB와 CCRIS 데이터베이스를 활용하였으며, Simplified Molecular Input Line Entry System (SMILES) 정보를 기반으로 분자의 구조와 화학적 성질을 그래프 데이터로 변환하였다. GAT 모델은 이 그래프 데이터를 이용하여 분자 간의 복잡한 상호작용을 학습하고, 폐암 발생 가능성을 예측하였으며, 성능 평가에서 다른 모델과 비교하여 가장 우수한 예측 성능을 입증하였다. 이는 폐암 예측을 위한 효과적인 도구로서 GAT의 잠재력을 보여주며, 향후 암 연구 및 치료 개발에 중요한 기여를 할 },
keywords = {Deep learning, Graph attention network},
pubstate = {published},
tppubtype = {conference}
}
이도현; 유선용
Abstract | Links | BibTeX | Dimensions | Tags: Bioinformatics, Cardiotoxicity, Graph attention network
@article{nokey,
title = {메시지 패싱 그래프 기반 딥러닝 모델을 활용한 화합물의 심장독성 예측},
author = {이도현 and 유선용},
url = {https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11956044},
doi = {10.9728/dcs.2024.25.10.2961},
isbn = {1598-2009},
year = {2024},
date = {2024-01-01},
urldate = {2024-01-01},
journal = {한국디지털콘텐츠학회},
volume = {25},
number = {10},
pages = {2961-2968},
abstract = {hERG 채널은 심장의 전기 활동에 필수적이며, 이 채널을 차단하는 물질은 심각한 심장 독성 효과를 일으킬 수 있다. 인실리코 예측 모델은 hERG 차단제를 효율적으로 선별할 수 있어 시간과 자원을 절약할 수 있다. 이전 접근법은 예측 결과를 해석하고 분자 구조-기능 관계를 이해하는 데 어렵다. 본 연구에서는 공개 데이터베이스로부터 화합물을 수집하여 12,920개의 데이터셋을 구축 하였다. 화합물의 그래프 구조를 고려하는 그래프 신경망(GNN) 가운데 메시지 패싱 신경망(MPNN)을 활용하여 특징 벡터를 추출하고, 이를 구조적ㆍ물리화학적 특성과 결합하여 최종 hERG 차단제를 예측하였다. 해당 모델은 AUROC는 0.864 (±0.009), AUPR은 0.907 (±0.010)의 성능을 달성하였다. 실험 결과, 제안된 모델은 그래프 특징 벡터를 통합하여 분자 특성을 효과적으로 반영하고 분자 간의 관계를 예측하여 hERG 차단제를 예측할 수 있음을 시사한다. 본 연구는 약물 개발과정에서 예비 도구로 활용되어 심장독성을 조기에 평가할 수 있을 것이다.},
note = {Correspondence to Sunyong Yoo},
keywords = {Bioinformatics, Cardiotoxicity, Graph attention network},
pubstate = {published},
tppubtype = {article}
}
2023
Dohyeon Lee; Sunyong Yoo
Links | BibTeX | Tags: Deep learning, Graph attention network
@conference{nokey,
title = {hERGAT: Predicting hERG blockers using graph attention mechanism through atom- and molecule- level interaction analysis},
author = {Dohyeon Lee and Sunyong Yoo},
url = {https://dtmbio.net/},
year = {2023},
date = {2023-01-02},
urldate = {2023-01-02},
booktitle = {In 17th International Conference on Data and Text Mining in Biomedical Informatics},
publisher = {DTMBIO},
keywords = {Deep learning, Graph attention network},
pubstate = {published},
tppubtype = {conference}
}